

Programmable Systems for Intelligence in Automobiles

PRYSTINE's target is to realize Fail-operational Urban Surround perception (FUSION) which is based on robust Radar and LiDAR sensor fusion and control functions in order to enable safe automated driving in urban and rural environments.

PRYSTINE's high-level goals are:

1. Enhanced reliability and performance, reduced cost and power of FUSION components
2. Dependable embedded control by co-integration of signal processing and AI approaches for FUSION
3. Optimized electrical/ electronic architecture enabling FUSION-based automated vehicles
4. Fail-operational systems for urban and rural environments based on FUSION

PRYSTINE expected outcomes:

- Fail-operational sensor-fusion framework at component level
- Dependable embedded electrical/ electronic architectures
- Safety compliant integration of Artificial Intelligence (AI) approaches for object recognition, scene understanding, and decision making within automotive applications
- The resulting reference FUSION hardware/software architectures and reliable components for autonomous systems validated in numerous industrial demonstrators

Project coordinator

Herbert Roedig

INFINEON TECHNOLOGIES AG

Contact person

George Dimitrakopoulos

INFINEON TECHNOLOGIES AG

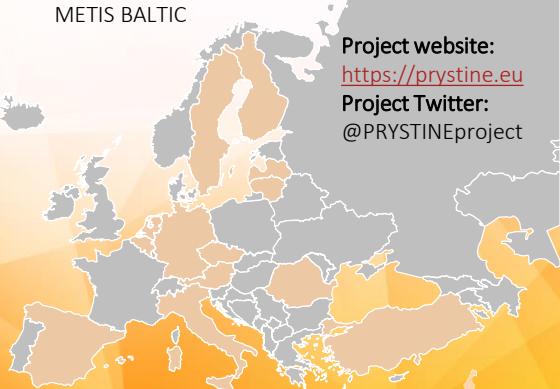
Project dissemination manager

Gabrièle Keraité

METIS BALTIC

Project website:
<https://prystine.eu>

Project Twitter:
@PRYSTINEproject


Acknowledgment

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme and national funding authorities under grant agreement No 783190

ECSEL Joint Undertaking

Electronic Components and Systems for European Leadership

Programmable Systems for Intelligence in Automobiles

PRYSTINE objectives:

O1 Enhanced reliability and performance, cost and power of FUSION components

O2 System dependable control by co-integration of signal processing and AI approaches for FUSION

O3 Optimized electrical/electronic architecture enabling fail-operational FUSION-based automated vehicles

O4 Automated Driving Fail-operational systems for urban and rural environments based on FUSION

O5 Competitive advantage for European industry

O6 Increased user acceptance of automated driving functions

Demonstrator 3.1: Electrical/electronic architecture demonstrator for automotive electronics enabling automated driving

Demonstrator 3.2: Simulation, development and validation framework for fail-operational sensor-fusion electrical/electronic architecture

Demonstrator 3.3: Dynamically shaped reliable mobile

Demonstrator 4.1: FUSION Hardware In the Loop (HIL) for heavy duty truck

Demonstrator 5.1: Heavy Duty Truck

Demonstrator 5.2: Truck (3 axles lorry with full size trailer)

Demonstrator 6.1: Traffic light time-to-green

Demonstrator 6.2: Trajectory recognition and Vulnerable Road User (VRU)

Demonstrator 6.3: Emergency lateral lane stop

Demonstrator 7.1: Shared control and arbitration (Level 2-3), studying driver-automation interaction and methods for vehicle authority transition Driver in the Loop (DiL) Simulator

Demonstrator 7.2: Layered Control (Level 2-3-4), studying cooperation between a passenger car and a bus, and driver role in supervising or controlling the vehicle when requested

Demonstrator 7.3: Highly automated vehicle (Level 3-4), study AI-based decision algorithms for urban and highway scenarios

Demonstrators:

Demonstrator 1.1: LiDAR + AURIX

Demonstrator 1.2: Radar + AURIX

Demonstrator 1.3: Radar

Demonstrator 1.4: Radar

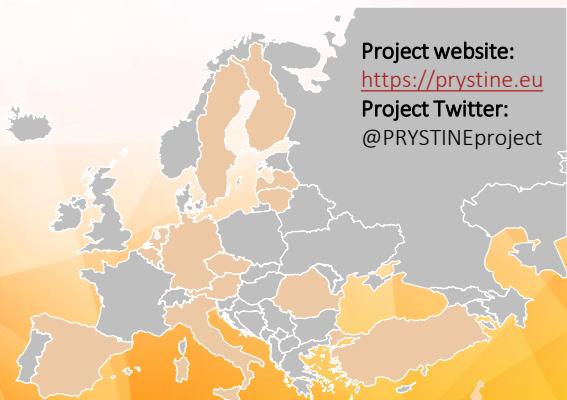
Demonstrator 1.5: Vehicle-level health monitoring

Demonstrator 2.1: Fail-operational autonomous driving platform: acronym FOADP

Demonstrator 2.2: Drive-by-wire car

Demonstrator 2.3: Heavy-duty truck vehicle

Demonstrator 2.4: Passenger vehicle for low speed autonomy communication


Acknowledgment

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme and national funding authorities under grant agreement No 783190

ECSEL Joint Undertaking

Electronic Components and Systems for European Leadership

Project website:
<https://prystine.eu>

Project Twitter:
@PRYSTINEproject